ON SUBSPACES OF QUOTIENTS OF $(\Sigma G_n)_{l_p}$ AND $(\Sigma G_n)_{c_0}$

 $\mathbf{B}\mathbf{Y}$

W. B. JOHNSON[†] AND M. ZIPPIN

ABSTRACT

Let $1 (resp. <math>p = \infty$). Then every \mathcal{L}_p -subspace of a quotient space of l_p (resp. c_0) is isomorphic to l_p (resp. c_0).

1. Introduction.

In this paper we show that if a subspace X of a quotient of a Banach space of the form $(\sum G_n)_{l_n}$ $(1 or <math>(\sum G_n)_{c_0}$ with $\dim G_n < \infty$ admits a nice enough structure, then X is itself isomorphic to a space of the form $(\sum E_n)_{l_p}$ or $(\sum E_n)_{c_0}$ with $\dim E_n < \infty$. The most significant application of this result is that for $1 , every <math>\mathscr{L}_p$ subspace of a quotient of l_p (or c_0 if $p = \infty$) is isomorphic to l_p (or c_0). This answers a question of Lindenstrauss and Pelczynski [7] and improves the result of the second-named author [9] that if X is a $\mathscr{L}_{\infty,\lambda}$ subspace of c_0 with $\lambda < 7/6$, then X is isomorphic to c_0 .

Before giving a precise statement of our main result, we mention the kinds of structures that concern us here. A sequence (E_n) of finite dimensional subspaces of the Banach space X is called a finite dimensional decomposition for X (f.d.d., in short) provided that, for each x in X, there is a unique sequence $P_nx \in E_n$ with $x = \sum P_nx$. If $(P_n^*X^*)$ forms an f.d.d. for X^* , the decomposition is called shrinking. A f.d.d. (E_n) is an l_p $(1 \le p < \infty)$ (respectively, c_0) decomposition provided that, given $e_n \in E_n$, $\sum e_n$ converges if and only if $\sum ||e_n||^p < \infty$ (respectively, $||e_n|| \to 0$).

Our main result is:

THEOREM 1. Let (G_n) be a sequence of finite dimensional spaces. Suppose (E_n) is a shrinking f.d.d. for a subspace X of a quotient of $(\sum G_n)_{l_n} (1$

[†] Supported by NSF GP-33578

{respectively, $(\sum G_n)_{c_0}$ }. Then there exist integers $1 = k_1 < k_2 < k_3 \cdots$ so that $([E_i]_{i=k_n}^{k_{n+1}-1})_{n=1}^{\infty}$ is an l_p (respectively, c_0) decomposition for X.

Enflo's remarkable counterexample to the approximation problem [2] points out the futility of attempting to classify even all subspaces of c_0 . However, the elementary techniques used here might be refined to classify the isomorphic types of all subspaces of quotients of $(\Sigma G_n)_{l_p}$ $(1 or <math>(\Sigma G_n)_{c_0}$ (dim $G_n < \infty$) which admit a reasonable structure (perhaps only the approximation property) as being of the form $(\Sigma E_n)_{l_p}$ or $(\Sigma E_n)_{c_0}$ with dim $E_n < \infty$. Corollary 2 points in this direction: If X is a subspace of a quotient of $(\Sigma G_n)_{l_n}$ $(1 or <math>(\Sigma G_n)_{c_0}$ (dim $G_n < \infty$) and X^* has the approximation property, then X is isomorphic to a complemented subspace of a space of the form $(\Sigma E_n)_{l_n}$ or $(\Sigma E_n)_{c_0}$ (with dim $E_n < \infty$).

Our notation follows that of [5] except that [A] is used instead of span A to denote the closed linear subspace generated by A. Terms used but not defined here are as in [5].

2. The main result

We begin with a basis-theoretic preliminary lemma. Note that B(X) is the closed unit ball of the Banach space X.

LEMMA 1. Suppose $T: X \to Y$ is a quotient map, (G_n) is an f.d.d. for X, and (E_n) is a shrinking f.d.d. for a subspace of Y. Let a positive integer n and $\varepsilon > 0$ be given. Then there exists a positive integer m so that for any y in $[E_i]_{i=m}^{\infty}$, ||y|| = 1, the distance $d(y, T3B[G_i]_{i=n}^{\infty})$ from y to $T3B[G_i]_{i=n}^{\infty}$ does not exceed ε .

PROOF. Suppose the conclusion is false. Then we may pick $y_m \in [E_i]_{i=m}^{\infty}$ $(m=1,2,3,\cdots), \|y_m\|=1$, with $d(y_m,T3B[G_i]_{i=n}^{\infty}) > \varepsilon$. By the Hahn-Banach Theorem, there exist $f_m \in Y^*$, $\|f_m\|=1=f_m(y_m)$, with $|f_m(Tx)|<1-\varepsilon$ for all $x \in 3B[G_i]_{i=n}^{\infty}$. Since (E_i) is shrinking, $y_m \stackrel{w}{\to} 0$; hence there is a subsequence (z_m) of (y_m) and a corresponding subsequence (g_m) of (f_m) satisfying $|g_m(z_j)|<1/j$ for j>m; $g_m(z_m)=1$.

Write $z_m = Tw_m$ with $w_m \in X$, $||w_m|| \le 1 + 1/m$. Let $P_i: X \to G_i$ be the obvious coordinate projections. By passing to a subsequence of (w_m) , we may assume that $\lim_{m\to\infty} P_i w_m$ exists for each fixed *i*. Hence by the f.d.d. variant of a well-known result of Bessaga and Pelczynski [1], some subsequence of $(w_{2m} - w_{2m+1})$ is arbitrarily close to a block basic sequence of (G_i) . (To apply

the result of [1], note that $g_{2m}T(w_{2m}-w_{2m+1})=g_{2m}(z_{2m})-g_{2m}(z_{2m+1})>1-\frac{1}{2m+1}$, from which $\|w_{2m}-w_{2m+1}\|$ is bounded away from 0.) Applying this result, we have that there are increasing sequences (p_i) and (k_i) of positive integers and vectors

$$b_m \in [G_i]_{i=k_m}^{k_{m+1}-1}, \|b_m\| \le 1 + \frac{1}{2p_m} + \frac{1}{2p_m+1}, \text{ with } \|b_m - (w_{2p_m} - w_{2p_m+1})\| < \frac{1}{m}.$$
We have $|g_{2p_m}T(w_{2p_m} - w_{2p_m+1})| > 1 - \frac{1}{2p_m} - \frac{1}{2p_m+1},$
and hence $g_{2p_m}(Tb_m) \ge \left(1 - \frac{1}{2p_m} - \frac{1}{2p_m+1}\right) - \frac{1}{m}.$

But when $k_m \ge n$, $b_m \in 3B[G_i]_{i=n}^{\infty}$, so that $|g_{2p_m}(Tb_m)| < 1 - \varepsilon$, which is a contradiction for sufficiently large values of m. Q.E.D.

PROPOSITION 1. Let (G_n) be a sequence of finite dimensional spaces. Suppose (E_n) is a shrinking f.d.d. for a subspace, X, of a quotient, Y, of $(\sum G_n)_{l_p}$ $(1 or <math>(\sum G_n)_{c_0}$. Then there is a sequence $1 = p_1 < p_2 < p_3 < \ldots$ of integers such that the f.d.d. (X_n) of X defined by $X_n = [E_i]_{i=p_n}^{p_n+1-1}$ has the following property: Given any sequence $1 = q(1) < q(2) < q(3) < \cdots$ of integers and $x_m \in [X_i]_{i=q(m)}^{q(m+1)-1}$,

$$\| \sum x_m \| \le \begin{cases} 7(\sum \|x_m\|^p)^{1/p}, \ 1$$

PROOF. We treat the case of $(\sum G_n)_{l_p}$; the case of $(\sum G_n)_{c_0}$ requires only notational changes.

Let $T: (\sum G_n)_{i_p} \to Y$ be the quotient map. We select sequences $1 = n_1 < n_2 < n_3 < \cdots$ and $1 = p_1 < p_2 < p_3 < \cdots$ of integers to satisfy for all $1 \le i < k$, (*) for each $x \in [E_j]_{j=p_i}^{p_k-1}$ with ||x|| = 1, $d(x, T3B[\sum_{j=n}^{n_{k+1}-1} G_j]) < 2^{-i}$; (**) for each $x \in [E_j]_{j=p_i}^{\infty}$ with ||x|| = 1, $d(x, T3B[\sum_{j=n_i}^{\infty} G_j]) < 2^{-i}$.

Set $n_1 = p_1 = 1$, let $n_2 > 1$, and, using Lemma 1, choose $p_2 > p_1$ so that (**) holds for i = 2. (**) obviously holds for i = 1, so choose $n_3 > n_2$ to make (*) valid for $1 \le i < k \le 2$. Now select $p_3 > p_2$ so that (**) holds for i = 3. Using (**) for i = 1, 2, choose $n_4 > n_3$ to make (*) true for $1 \le i < k \le 3$. Continue in this way to define (p_i) and (n_i) by induction.

Set $X_m = [E_i]_{i=p_m}^{p_{m+1}-1}$, let $1 \le q(1) < q(2) < \cdots$, and suppose $X_m \in [X_i]_{i=q(m)}^{q(m+1)-1}$.

By (*) there are $w_m \in \sum_{i=n_n(m)}^{n_q(m+1)+1-1} G_i$ with $||w_m|| \le 3 ||x_m||$ and $||Tw_m - x_m|| \le 2^{-p_n(m)} ||x_m|| \le 2^{-m} ||x_m||$.

But
$$\| \sum T w_m \| \le \| \sum w_m \| \le \| \sum_{m \text{ odd}} w_m \| + \| \sum_{m \text{ even}} w_m \| =$$

$$= (\sum_{m \text{ odd}} \|w_m\|^p)^{1/p} + (\sum_{m \text{ even}} \|w_m\|^p)^{1/p} \le 2(\sum \|w_m\|^p)^{1/p} \le 6(\sum \|x_m\|^p)^{1/p}.$$

Thus
$$\| \sum x_m \| \le 6 (\sum \|x_m\|^p)^{1/p} + \sum 2^{-m} \|x_m\| \le 7 (\sum \|x_m\|^p)^{1/p}$$
. Q.E.D.

PROOF OF THEOREM 1. Let $1 = p_1 < p_2 < \cdots$ and (X_n) be as in the conclusion of Proposition 1. For the case of c_0 , simply note that, since (X_n) is an f.d.d., there is a constant c so that, if $x_n \in X_n$, $c \sup ||x_n|| \le ||\sum x_n||$. Thus (X_n) is already a c_0 decomposition.

For the case of $(\sum G_n)_{l_n}$ $(1 we need to dualize Proposition 1. Since a subspace of a quotient is also a quotient of a subspace, it follows that <math>X^*$ is a subspace of a quotient of $(\sum G_n^*)_{l_n}(1/p+1/q=1)$. Also, if P_i is the coordinate projection of X onto X_i , then $(P_i^*X^*)$ is a (necessarily shrinking) f.d.d. for X^* . Thus from Proposition 1, we have that there is a sequence $1=q(1)< q(2)<\cdots$ of integers so that, if $x_m^* \in [P_i^*X^*]_{i=q(m)}^{q(m+1)-1}$, then $\|\sum x_m^*\| \le 7(\sum \|x_m^*\|^q)^{1/q}$. From this it follows that there is a constant c, depending only on the f.d.d. (X_n) , so that, if $x_m \in [X_i]_{i=q(m)}^{q(m+1)-1}$, then $c(\sum \|x_m\|^p)^{1/p} \le \|\sum x_m\|$. But also $\|\sum x_m\| \le 7(\sum \|x_m\|^p)^{1/p}$ by Proposition 1, so $([X_i]_{i=q(m)}^{q(m+1)-1})_{m=1}^{\infty}$ is an l_p decomposition.

COROLLARY 1. Let (G_n) be a sequence of finite dimensional spaces, let 1 , and suppose that <math>X is an \mathcal{L}_p subspace of a quotient of $(\sum G_n)_{l_p}$ (if $1) or <math>(\sum G_n)_{c_0}$ (if $p = \infty$). Then X is isomorphic to l_p (if $1) or <math>c_0$ (if $p = \infty$).

PROOF. It is known (cf. [5]) that X admits a shrinking f.d.d.; hence by Theorem 1, X is isomorphic to a space of the form ($\sum E_n$) $_{l_n}$ (if $1) or (<math>\sum E_n$) $_{c_0}$ (if $p = \infty$) with dim $E_n < \infty$. Since X is a \mathcal{L}_p space, it follows easily that there is a constant λ , depending only on X and (E_n) , so that, for each n, there is an isomorphism T_n : $E_n \stackrel{into}{\to} l_p(c_0, \text{if } p = \infty)$ with $||T_n|| = 1, ||T_n^{-1}|| \le \lambda$, and there is a projection P_n of l_p (or c_0 , if $p = \infty$) onto $T_n E_n$ with $||P_n|| \le \lambda$. From this it follows that X is isomorphic to a complemented subspace of $l_p(c_0, \text{if } p = \infty)$ and hence by Pelczynski's result [8], X is isomorphic to $l_p(c_0, \text{if } p = \infty)$. Q.E.D.

Remark 1. Lindenstrauss [6] showed that l_1 contains a \mathcal{L}_1 subspace which

is not isomorphic to l_1 , so there is no analogue to Corollary 1 for p = 1 even for subspaces of l_1 .

REMARK 2. In [9] it was shown that, for $1 \le \lambda < 7/6$, there is a number $f(\lambda)$ so that if X is a $\mathcal{L}_{\infty,\lambda}$ subspace of c_0 , then there is an isomorphism $T: X \xrightarrow{onto} c_0$ with $||T|| ||T^{-1}|| \le f(\lambda)$. Further, f depends continuously on λ in the sense that $f(\lambda) \to 1$ as $\lambda \to 1$. This last result does not follow from the techniques in this paper and the corresponding question for $\mathcal{L}_{p,\lambda}$ subspaces of l_p (for 1 and even for <math>p = 1) remains open.

For subspaces of quotients of $(\sum G_n)_{l_-}$ and $(\sum G_n)_{c_0}$ which admit a structure weaker than a shrinking f.d.d., we have a weaker version of Theorem 1.

COROLLARY 2. Let (G_n) be a sequence of finite dimensional spaces and suppose that X is a subspace of a quotient of $(\sum G_n)_{l_-} (1 or <math>(\sum G_n)_{c_0}$. If X^* has the approximation property, then X is isomorphic to a complemented subspace of $(\sum E_n)_{l_-} (1 or <math>(\sum E_n)_{c_0}$ for some sequence (E_n) of finite dimensional spaces.

PROOF. Since X^* is separable, it follows from Grothendieck's results [3] (cf. [5, Remark 4.11]) that X^* has the bounded approximation property. Let (F_n) be a sequence of finite dimensional spaces which is dense (in the Banach-Mazur sense) for the class of all finite dimensional spaces and set $C_p = (\sum F_n)_{c_1}$ ($1), <math>C_{\infty} = (\sum F_n)_{c_0}$. C_p is isomorphic to the space C_p discussed in [4]. Now certainly ($\sum G_n|_{l_p}$ ($1) (or (<math>\sum G_n|_{c_0}$) is complemented in C_p (or C_{∞}); hence $X \oplus C_p$ is isomorphic to a subspace of a quotient of C_p . But since X^* has the bounded approximation property and is separable, $X \oplus C_p$ has by [4] a shrinking f.d.d. Hence the desired conclusion follows from Theorem 1. Q.E.D.

REMARK. Continuing in the notation of the proof of Corollary 2, we have from Pelczynski's decomposition method [8] that $X \oplus C_p$ is isomorphic to C_p , since each space is complemented in the other and C_p is isomorphic to ($\sum C_p$)₁ $\{(\sum C_{\infty})_{c_0}, \text{ if } p = \infty\}$. Thus C_p has the property that a Banach space, X, is isomorphic to a complemented subspace of C_p if and only if X is isomorphic to a subspace of a quotient of C_p and X^* has the approximation property.

REFERENCES

- 1. C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
 - 2. P. Enflo, A counterexample to the approximation problem, (to appear).
- 3. A. Grothendieck, Products tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
 - 4. W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337-345.
- 5. W. B. Johnson, H. P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506.
 - 6. J. Lindenstrauss, On a certain subspace of l1, Bull. Acad. Polon. Sci. 12 (1964), 539-542.
- 7. J. Lindenstrauss and A. Pelzynski. Absolutely summing operators in \mathcal{L}_p spaces and their applications, Studia Math. 29 (1968), 275–326.
 - 8. A. Pelcyznski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
 - 9. M. Zippin, \mathcal{L}_{∞} -subspaces of c_0 , (to appear).

THE OHIO STATE UNIVERSITY

AND

THE HEBREW UNIVERSITY OF JERUSALEM AND THE OHIO STATE UNIVERSITY